diff --git a/DOCS.md b/DOCS.md index 6f6e7af..c3313a1 100644 --- a/DOCS.md +++ b/DOCS.md @@ -7,6 +7,200 @@ While numerous tools are available for training machine learning models, many li **[mlModelSaver](https://github.com/smartdev-ca/mlModelSaver)** fills this gap, offering an intuitive way to save machine learning models and transformers. It facilitates seamless integration with frameworks like FastAPI ([Examples](https://github.com/jafarijason/ml_models_deployments)), Flask, and Django, enabling easy deployment and serving of models in production environments. Empower your machine learning workflow with **mlModelSaver** – the easy and efficient tool for model management. +## [Demo](https://ml.jasonjafari.com/docs) + +```bash +curl --location 'https://ml.jasonjafari.com/models/list' +``` + +result +``` +[ + "logisticRegYFromX1AndX2ModelFit", + "salaryBasedOnGpaMisStatistics_Transfoms_misXStatisticsFit", + "modelPredictSaleByTemperatureAdvertisingDiscountFit", + "wageEducAgePower2ModelFit", + "logRentWithBedsandLogSqftFit", + "spamBasedOnRecipientsHyperlinksCharactersLogitModelFit", + ... +] +``` + +### demo example 1 +modelPredictSaleByTemperatureAdvertisingDiscountFit [train notebook](https://github.com/jafarijason/ml_models_deployments/blob/master/notebooks/001.ipynb) + +Model info +``` +curl --location 'https://ml.jasonjafari.com/model/info/modelPredictSaleByTemperatureAdvertisingDiscountFit' +``` +result +``` +{ + "modelName": "modelPredictSaleByTemperatureAdvertisingDiscountFit", + "description": "modelPredictSaleByTemperatureAdvertisingDiscountFit", + "modelType": "sm.OLS", + "inputs": [ + { + "name": "Temperature", + "type": "float" + }, + { + "name": "Advertising", + "type": "float" + }, + { + "name": "Discount", + "type": "float" + } + ], + "outputs": [ + { + "name": "Sales", + "type": "float" + } + ] +} +``` + +predict +```bash +curl --location 'https://ml.jasonjafari.com/model/predict' \ +--header 'Content-Type: application/json' \ +--data '{ + "name": "modelPredictSaleByTemperatureAdvertisingDiscountFit", + "inputs": [ + { + "Temperature": 42, + "Advertising": 15, + "Discount": 5 + } + ] +}' +``` +result +``` +[ + { + "Sales": 19590.467270313893 + } +] +``` + +### demo example2 [train Notebook](https://github.com/jafarijason/ml_models_deployments/blob/master/notebooks/002.ipynb) * interaction transformer +salaryBasedOnGpaMisStatistics_Transfoms_misXStatisticsFit + +```bash +# info +curl --location 'https://ml.jasonjafari.com/model/info/salaryBasedOnGpaMisStatistics_Transfoms_misXStatisticsFit' +``` +```bash +# predict +curl --location 'https://ml.jasonjafari.com/model/predict' \ +--header 'Content-Type: application/json' \ +--data '{ + "name": "salaryBasedOnGpaMisStatistics_Transfoms_misXStatisticsFit", + "inputs": [ + { + "GPA": 3.53, + "MIS": 1, + "Statistics": 0 + } + ] +}' +``` + +### demo example3 [train Notebook](http://jasons-macbook-pro.local:3225/notebooks/003.ipynb) * quadratic eq transformer +wageEducAgePower2ModelFit +```bash +# info +curl --location 'https://ml.jasonjafari.com/model/info/wageEducAgePower2ModelFit' +``` +```bash +# predict +curl --location 'https://ml.jasonjafari.com/model/predict' \ +--header 'Content-Type: application/json' \ +--data '{ + "name": "wageEducAgePower2ModelFit", + "inputs": [ + { + "Educ": 12, + "Age": 76 + } + ] +}' +``` + +### demo example4 [train Notebook](http://jasons-macbook-pro.local:3225/notebooks/004.ipynb) * log eq transformer for dependent adn independent attributes +logRentWithBedsandLogSqftFit +```bash +# info +curl --location 'https://ml.jasonjafari.com/model/info/logRentWithBedsandLogSqftFit' +``` +```bash +# predict +curl --location 'https://ml.jasonjafari.com/model/predict' \ +--header 'Content-Type: application/json' \ +--data '{ + "name": "logRentWithBedsandLogSqftFit", + "inputs": [ + { + "Beds": 2, + "Sqft": 900 + } + ] +}' +``` + + +### demo example5 [train Notebook](http://jasons-macbook-pro.local:3225/notebooks/005_Linear_Probability_and_logistic_Regression.ipynb) * Logistic regression +logisticRegYFromX1AndX2ModelFit +```bash +# info +curl --location 'https://ml.jasonjafari.com/model/info/logisticRegYFromX1AndX2ModelFit' +``` +```bash +# predict +curl --location 'https://ml.jasonjafari.com/model/predict' \ +--header 'Content-Type: application/json' \ +--data '{ + "name": "logisticRegYFromX1AndX2ModelFit", + "inputs": [ + { + "x1": 16.35, + "x2": 49.44 + } + ] +}' +``` + +### demo example6 [train Notebook](http://jasons-macbook-pro.local:3225/notebooks/007_KNN_adjusted.ipynb) * KNN +gymEnrollAgeIncomeHoursDfKnnFit +```bash +# info +curl --location 'https://ml.jasonjafari.com/model/info/gymEnrollAgeIncomeHoursDfKnnFit' +``` +```bash +# predict +curl --location 'https://ml.jasonjafari.com/model/predict' \ +--header 'Content-Type: application/json' \ +--data '{ + "name": "gymEnrollAgeIncomeHoursDfKnnFit", + "inputs": [ + { + "Age": 26, + "Income": 18000, + "Hours": 14 + }, + { + "Age": 55, + "Income": 42000, + "Hours": 16 + } + ] +}' +``` + + ## Installation You can install **mlModelSaver** via pip: