Add examples to the documentation
This commit is contained in:
parent
3218361426
commit
8897aa56c7
194
DOCS.md
194
DOCS.md
@ -7,6 +7,200 @@ While numerous tools are available for training machine learning models, many li
|
||||
|
||||
**[mlModelSaver](https://github.com/smartdev-ca/mlModelSaver)** fills this gap, offering an intuitive way to save machine learning models and transformers. It facilitates seamless integration with frameworks like FastAPI ([Examples](https://github.com/jafarijason/ml_models_deployments)), Flask, and Django, enabling easy deployment and serving of models in production environments. Empower your machine learning workflow with **mlModelSaver** – the easy and efficient tool for model management.
|
||||
|
||||
## [Demo](https://ml.jasonjafari.com/docs)
|
||||
|
||||
```bash
|
||||
curl --location 'https://ml.jasonjafari.com/models/list'
|
||||
```
|
||||
|
||||
result
|
||||
```
|
||||
[
|
||||
"logisticRegYFromX1AndX2ModelFit",
|
||||
"salaryBasedOnGpaMisStatistics_Transfoms_misXStatisticsFit",
|
||||
"modelPredictSaleByTemperatureAdvertisingDiscountFit",
|
||||
"wageEducAgePower2ModelFit",
|
||||
"logRentWithBedsandLogSqftFit",
|
||||
"spamBasedOnRecipientsHyperlinksCharactersLogitModelFit",
|
||||
...
|
||||
]
|
||||
```
|
||||
|
||||
### demo example 1
|
||||
modelPredictSaleByTemperatureAdvertisingDiscountFit [train notebook](https://github.com/jafarijason/ml_models_deployments/blob/master/notebooks/001.ipynb)
|
||||
|
||||
Model info
|
||||
```
|
||||
curl --location 'https://ml.jasonjafari.com/model/info/modelPredictSaleByTemperatureAdvertisingDiscountFit'
|
||||
```
|
||||
result
|
||||
```
|
||||
{
|
||||
"modelName": "modelPredictSaleByTemperatureAdvertisingDiscountFit",
|
||||
"description": "modelPredictSaleByTemperatureAdvertisingDiscountFit",
|
||||
"modelType": "sm.OLS",
|
||||
"inputs": [
|
||||
{
|
||||
"name": "Temperature",
|
||||
"type": "float"
|
||||
},
|
||||
{
|
||||
"name": "Advertising",
|
||||
"type": "float"
|
||||
},
|
||||
{
|
||||
"name": "Discount",
|
||||
"type": "float"
|
||||
}
|
||||
],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "Sales",
|
||||
"type": "float"
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
predict
|
||||
```bash
|
||||
curl --location 'https://ml.jasonjafari.com/model/predict' \
|
||||
--header 'Content-Type: application/json' \
|
||||
--data '{
|
||||
"name": "modelPredictSaleByTemperatureAdvertisingDiscountFit",
|
||||
"inputs": [
|
||||
{
|
||||
"Temperature": 42,
|
||||
"Advertising": 15,
|
||||
"Discount": 5
|
||||
}
|
||||
]
|
||||
}'
|
||||
```
|
||||
result
|
||||
```
|
||||
[
|
||||
{
|
||||
"Sales": 19590.467270313893
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
### demo example2 [train Notebook](https://github.com/jafarijason/ml_models_deployments/blob/master/notebooks/002.ipynb) * interaction transformer
|
||||
salaryBasedOnGpaMisStatistics_Transfoms_misXStatisticsFit
|
||||
|
||||
```bash
|
||||
# info
|
||||
curl --location 'https://ml.jasonjafari.com/model/info/salaryBasedOnGpaMisStatistics_Transfoms_misXStatisticsFit'
|
||||
```
|
||||
```bash
|
||||
# predict
|
||||
curl --location 'https://ml.jasonjafari.com/model/predict' \
|
||||
--header 'Content-Type: application/json' \
|
||||
--data '{
|
||||
"name": "salaryBasedOnGpaMisStatistics_Transfoms_misXStatisticsFit",
|
||||
"inputs": [
|
||||
{
|
||||
"GPA": 3.53,
|
||||
"MIS": 1,
|
||||
"Statistics": 0
|
||||
}
|
||||
]
|
||||
}'
|
||||
```
|
||||
|
||||
### demo example3 [train Notebook](http://jasons-macbook-pro.local:3225/notebooks/003.ipynb) * quadratic eq transformer
|
||||
wageEducAgePower2ModelFit
|
||||
```bash
|
||||
# info
|
||||
curl --location 'https://ml.jasonjafari.com/model/info/wageEducAgePower2ModelFit'
|
||||
```
|
||||
```bash
|
||||
# predict
|
||||
curl --location 'https://ml.jasonjafari.com/model/predict' \
|
||||
--header 'Content-Type: application/json' \
|
||||
--data '{
|
||||
"name": "wageEducAgePower2ModelFit",
|
||||
"inputs": [
|
||||
{
|
||||
"Educ": 12,
|
||||
"Age": 76
|
||||
}
|
||||
]
|
||||
}'
|
||||
```
|
||||
|
||||
### demo example4 [train Notebook](http://jasons-macbook-pro.local:3225/notebooks/004.ipynb) * log eq transformer for dependent adn independent attributes
|
||||
logRentWithBedsandLogSqftFit
|
||||
```bash
|
||||
# info
|
||||
curl --location 'https://ml.jasonjafari.com/model/info/logRentWithBedsandLogSqftFit'
|
||||
```
|
||||
```bash
|
||||
# predict
|
||||
curl --location 'https://ml.jasonjafari.com/model/predict' \
|
||||
--header 'Content-Type: application/json' \
|
||||
--data '{
|
||||
"name": "logRentWithBedsandLogSqftFit",
|
||||
"inputs": [
|
||||
{
|
||||
"Beds": 2,
|
||||
"Sqft": 900
|
||||
}
|
||||
]
|
||||
}'
|
||||
```
|
||||
|
||||
|
||||
### demo example5 [train Notebook](http://jasons-macbook-pro.local:3225/notebooks/005_Linear_Probability_and_logistic_Regression.ipynb) * Logistic regression
|
||||
logisticRegYFromX1AndX2ModelFit
|
||||
```bash
|
||||
# info
|
||||
curl --location 'https://ml.jasonjafari.com/model/info/logisticRegYFromX1AndX2ModelFit'
|
||||
```
|
||||
```bash
|
||||
# predict
|
||||
curl --location 'https://ml.jasonjafari.com/model/predict' \
|
||||
--header 'Content-Type: application/json' \
|
||||
--data '{
|
||||
"name": "logisticRegYFromX1AndX2ModelFit",
|
||||
"inputs": [
|
||||
{
|
||||
"x1": 16.35,
|
||||
"x2": 49.44
|
||||
}
|
||||
]
|
||||
}'
|
||||
```
|
||||
|
||||
### demo example6 [train Notebook](http://jasons-macbook-pro.local:3225/notebooks/007_KNN_adjusted.ipynb) * KNN
|
||||
gymEnrollAgeIncomeHoursDfKnnFit
|
||||
```bash
|
||||
# info
|
||||
curl --location 'https://ml.jasonjafari.com/model/info/gymEnrollAgeIncomeHoursDfKnnFit'
|
||||
```
|
||||
```bash
|
||||
# predict
|
||||
curl --location 'https://ml.jasonjafari.com/model/predict' \
|
||||
--header 'Content-Type: application/json' \
|
||||
--data '{
|
||||
"name": "gymEnrollAgeIncomeHoursDfKnnFit",
|
||||
"inputs": [
|
||||
{
|
||||
"Age": 26,
|
||||
"Income": 18000,
|
||||
"Hours": 14
|
||||
},
|
||||
{
|
||||
"Age": 55,
|
||||
"Income": 42000,
|
||||
"Hours": 16
|
||||
}
|
||||
]
|
||||
}'
|
||||
```
|
||||
|
||||
|
||||
## Installation
|
||||
|
||||
You can install **mlModelSaver** via pip:
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user